metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊4D12, C24.40D6, C6.42+ (1+4), D6⋊D4⋊3C2, C12⋊7D4⋊3C2, D6⋊C4⋊1C22, C22⋊C4⋊43D6, (C22×C6)⋊10D4, (C22×C4)⋊12D6, C6.8(C22×D4), (C2×D12)⋊3C22, C3⋊1(C23⋊3D4), (C2×C6).37C24, C4⋊Dic3⋊5C22, C2.8(D4⋊6D6), (S3×C23)⋊4C22, (C22×C12)⋊8C22, C22.18(C2×D12), C2.10(C22×D12), (C2×C12).130C23, C22.D12⋊2C2, (C22×S3).9C23, C22.76(S3×C23), (C23×C6).63C22, (C22×C6).127C23, C23.158(C22×S3), (C2×Dic3).10C23, (C22×Dic3)⋊7C22, (C6×C22⋊C4)⋊15C2, (C2×C22⋊C4)⋊16S3, (C2×C6).173(C2×D4), (C22×C3⋊D4)⋊6C2, (C2×C3⋊D4)⋊36C22, (C3×C22⋊C4)⋊48C22, (C2×C4).136(C22×S3), SmallGroup(192,1052)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1096 in 346 conjugacy classes, 111 normal (13 characteristic)
C1, C2, C2 [×2], C2 [×10], C3, C4 [×8], C22, C22 [×6], C22 [×30], S3 [×4], C6, C6 [×2], C6 [×6], C2×C4 [×4], C2×C4 [×10], D4 [×20], C23, C23 [×6], C23 [×14], Dic3 [×4], C12 [×4], D6 [×20], C2×C6, C2×C6 [×6], C2×C6 [×10], C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×2], C22×C4 [×2], C2×D4 [×20], C24, C24 [×2], D12 [×4], C2×Dic3 [×4], C2×Dic3 [×4], C3⋊D4 [×16], C2×C12 [×4], C2×C12 [×2], C22×S3 [×4], C22×S3 [×8], C22×C6, C22×C6 [×6], C22×C6 [×2], C2×C22⋊C4, C22≀C2 [×4], C4⋊D4 [×4], C22.D4 [×4], C22×D4 [×2], C4⋊Dic3 [×4], D6⋊C4 [×8], C3×C22⋊C4 [×4], C2×D12 [×4], C22×Dic3 [×2], C2×C3⋊D4 [×8], C2×C3⋊D4 [×8], C22×C12 [×2], S3×C23 [×2], C23×C6, C23⋊3D4, D6⋊D4 [×4], C22.D12 [×4], C12⋊7D4 [×4], C6×C22⋊C4, C22×C3⋊D4 [×2], C23⋊4D12
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, D12 [×4], C22×S3 [×7], C22×D4, 2+ (1+4) [×2], C2×D12 [×6], S3×C23, C23⋊3D4, C22×D12, D4⋊6D6 [×2], C23⋊4D12
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d12=e2=1, ab=ba, dad-1=eae=ac=ca, ebe=bc=cb, bd=db, cd=dc, ce=ec, ede=d-1 >
(1 25)(2 8)(3 27)(4 10)(5 29)(6 12)(7 31)(9 33)(11 35)(13 19)(14 46)(15 21)(16 48)(17 23)(18 38)(20 40)(22 42)(24 44)(26 32)(28 34)(30 36)(37 43)(39 45)(41 47)
(1 48)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 34)(14 35)(15 36)(16 25)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 37)(24 38)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 48)(22 47)(23 46)(24 45)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)
G:=sub<Sym(48)| (1,25)(2,8)(3,27)(4,10)(5,29)(6,12)(7,31)(9,33)(11,35)(13,19)(14,46)(15,21)(16,48)(17,23)(18,38)(20,40)(22,42)(24,44)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (1,48)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,34)(14,35)(15,36)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)>;
G:=Group( (1,25)(2,8)(3,27)(4,10)(5,29)(6,12)(7,31)(9,33)(11,35)(13,19)(14,46)(15,21)(16,48)(17,23)(18,38)(20,40)(22,42)(24,44)(26,32)(28,34)(30,36)(37,43)(39,45)(41,47), (1,48)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,34)(14,35)(15,36)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,37)(24,38), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,48)(22,47)(23,46)(24,45)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31) );
G=PermutationGroup([(1,25),(2,8),(3,27),(4,10),(5,29),(6,12),(7,31),(9,33),(11,35),(13,19),(14,46),(15,21),(16,48),(17,23),(18,38),(20,40),(22,42),(24,44),(26,32),(28,34),(30,36),(37,43),(39,45),(41,47)], [(1,48),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,34),(14,35),(15,36),(16,25),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,37),(24,38)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,48),(22,47),(23,46),(24,45),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31)])
Matrix representation ►G ⊆ GL8(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 6 | 0 | 3 |
0 | 0 | 0 | 0 | 10 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 10 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 8 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 12 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,6,0,10,0,0,0,0,0,0,6,0,10,0,0,0,0,3,0,7,0,0,0,0,0,0,3,0,7],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,11,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,11,1],[0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,12,0,4,0,0,0,0,0,11,1,8,9,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,12] >;
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 12 | 12 | 12 | 12 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D12 | 2+ (1+4) | D4⋊6D6 |
kernel | C23⋊4D12 | D6⋊D4 | C22.D12 | C12⋊7D4 | C6×C22⋊C4 | C22×C3⋊D4 | C2×C22⋊C4 | C22×C6 | C22⋊C4 | C22×C4 | C24 | C23 | C6 | C2 |
# reps | 1 | 4 | 4 | 4 | 1 | 2 | 1 | 4 | 4 | 2 | 1 | 8 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2^3\rtimes_4D_{12}
% in TeX
G:=Group("C2^3:4D12");
// GroupNames label
G:=SmallGroup(192,1052);
// by ID
G=gap.SmallGroup(192,1052);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,675,570,80,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=e^2=1,a*b=b*a,d*a*d^-1=e*a*e=a*c=c*a,e*b*e=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations